Differential Pressure in Cleanrooms

Facts:
- A differential pressure of 400 Pa correlates with a force of 40 kg/m²
- ISO 14644 Part 1 requires regular monitoring of the differential pressure in cleanrooms
- A class 1 cleanroom requires 360 - 540 complete air changes every hour

Differential Pressure in Cleanrooms overall functionality.

Differential pressure - The key parameter

Differential pressure (Δp) is simply the measured pressure deviation between two points in different pressure systems.

Beside temperature and relative humidity, Δp is arguably the key parameter, which in combination with both of them, ensures the correct operation and efficiency of a cleanroom.

Since a cleanroom’s main purpose is to avoid any sort of contamination by particulates, a constant airflow has to be maintained.

Using a well-balanced system of controlled air inlets and leaks, designers ensure that the high airflow removes airborne particulates caused by workers and machines in these highly sensitive environments. The result is an over-pressure system.

The pressure must be controlled precisely to ensure overall functionality.

A low pressure difference will cause contamination in the cleanroom - too much may trigger unwanted turbulence and waste energy.

Different classes of cleanroom require a specified number of complete air changes every hour. This is another reason that Δp is the key quantitative parameter to maintain the classification.

How to keep control of Differential pressure?

Overpressure systems in cleanrooms require complex planning for the incoming and outgoing air. Air volume controllers are installed in each room. An internal motorised damper regulates the air flow.

To achieve this the pressure difference between the cleanroom and a reference has to be converted into a signal which controls the damper.

It is crucial to choose the correct low pressure reference especially when it comes to a cleanroom layout where several rooms are connected (anterooms, corridors etc).

Differential pressure transmitters compare two pressure points and generate signals accordingly. They have two inlet ports for thin tubing enabling two areas of different pressure to be measured. The inlets are usually labelled (+) & (-) for high and low pressure inputs from the rooms.

It is highly recommended that the same low pressure reference is used if there are several connected rooms, perhaps including a corridor. To measure and adjust Δp between each cleanroom would lead to pressure fluctuations which should be avoided.

The table shows an example of a 3-room layout, all pressures are compared to a single reference.

<table>
<thead>
<tr>
<th>Room</th>
<th>Parameterised Pressure Value (Pa)</th>
<th>Δp Compared to Corridor (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteroom</td>
<td>+10</td>
<td>+10</td>
</tr>
<tr>
<td>Room 1</td>
<td>+20</td>
<td>+20</td>
</tr>
<tr>
<td>Room 2</td>
<td>+30</td>
<td>+30</td>
</tr>
</tbody>
</table>

Application note: N° F027

Application note: N° F027

Discussed in this edition:
- Δp - The Key Parameter
- How to keep control of Δp?
- What solution can Rotronic offer?
- Rotronic PF4-Differential Pressure Transmitter
- Customer benefits
- Contact us

June 2013
What solution can Rotronic offer?

With the PF4 differential pressure transmitter Rotronic adds another parameter to its portfolio.

With a robust thermal mass flow sensor integrated internally the PF4 can detect very small pressure differences between two points. A wide range of output signals enable Δp to be monitored continuously and the conditions in the cleanroom controlled. Temperature can also be measured simultaneously with an interchangeable 4-wire Pt100 sensor which can be connected directly, or cable mounted as required.

Rotronic PF4 differential pressure transmitter:

Technical specifications:

Sensor ranges:

- $-25...+25$ Pa
- $-50...+50$ Pa
- $-100...+100$ Pa
- $-250...+250$ Pa
- $-500...+500$ Pa
- $-100...+200$ °C

Accuracy @23 °C:

±1 % of measurement range

Long-term stability:

<0.3 %/ year

Outputs:

Analogue: 0...1 V, 0...5 V, 0...10 V, 0...20 mA, 4...20 mA

Digital: Ethernet option

Integrated alarm relay:

Programmable time delay & activation period

Configurable response time:

0...30 min.

Adjustment points:

Zero point & 1 reference point

Pressure resistance:

Max. 2 bar

Power supply:

12...40 VDC / 14...28 VAC

Conformity:

FDA 21 CFR part 11, GAMP5

CE/EMC: 2004/108/EC

IP65

Accuracy and sensor technology:

A thermal mass flow sensor works without any moving parts. Therefore it is much more robust than a membrane sensor type. Besides this it is able to provide high accuracy measurements that are repeatable. Additionally, a thermal mass flow sensor is resistant to high overloads of up to 2 bar and dirt particles. The leakage factor of only 180 µl/min is almost insignificant.

Communication:

The PF4 transmitter has the same outputs and service interface available from all Rotronic transmitters. The unit can be configured according to your needs. When connected via the Ethernet HW4 records Δp measurements & triggers alarms. The integrated relay can be used to activate visual or audible alarms to warn of instabilities in the cleanroom environment.

Long-term stability:

With a specified accuracy of ±1 % of the measurement range this product meets the high sensor standards set by Rotronic.

Calibration:

Easily close the loop to perform a zero calibration using either HW4 software or through the user interface, conveniently on site. If the actual conditions are known the unit also can be adjusted by entering a gain value.
Contact us:

Rotronic is represented in more than 40 countries around the world. An up-to-date list of all our partners is available at www.rotronic.com